
Gamma-SLAM: Using Stereo Vision and Variance Grid Maps for
SLAM in Unstructured Environments

Tim K. Marks, Andrew Howard, Max Bajracharya, Garrison W. Cottrell, and Larry Matthies

Abstract— We introduce a new method for stereo visual
SLAM (simultaneous localization and mapping) that works
in unstructured, outdoor environments. Unlike other grid-
based SLAM algorithms, which use occupancy grid maps, our
algorithm uses a new mapping technique that maintains a
posterior distribution over the height variance in each cell. This
idea was motivated by our experience with outdoor navigation
tasks, which has shown height variance to be a useful measure of
traversability. To obtain a joint posterior over poses and maps,
we use a Rao-Blackwellized particle filter: the pose distribution
is estimated using a particle filter, and each particle has its own
map that is obtained through exact filtering conditioned on
the particle’s pose. Visual odometry provides good proposal
distributions for the particle pose. In the analytical (exact)
filter for the map, we update the sufficient statistics of a
gamma distribution over the precision (inverse variance) of
heights in each grid cell. We verify the algorithm’s accuracy
on two outdoor courses by comparing with ground truth data
obtained using electronic surveying equipment. In addition, we
solve for the optimal transformation from the SLAM map to
georeferenced coordinates, based on a noisy GPS signal. We
derive an online version of this alignment process, which can
be used to maintain a running estimate of the robot’s global
position that is much more accurate than the GPS readings.

I. INTRODUCTION

The task of simultaneous localization and mapping
(SLAM) is to estimate from a temporal sequence of observa-
tions both a map of the environment and the pose (position
and orientation) of the observer (the robot) in this map. Like
many SLAM systems (e.g., [1; 2; 3]), our system uses a Rao-
Blackwellized particle filter [4]: Each particle has a single
hypothesis about the robot’s pose; based on its pose history,
each particle uses an exact filter to obtain a map. However,
our algorithm’s exact filter and map representation differ
from those of existing algorithms.

Most current approaches to SLAM use laser range scans
for their observations. Many of these laser-based systems
(such as [1]) are landmark-based, in that each particle’s map
consists of a posterior distribution over the locations of a
number of salient landmarks. Others (such as [2]) are grid-
based, meaning that each particle’s map is a dense occupancy
grid containing the posterior probability that each cell in the
grid is occupied. In addition to SLAM algorithms that use
laser range measurements, there are a growing number of
examples of vision-based slam, a few of which use stereo

Tim K. Marks and Garrison W. Cottrell are at the Department of
Computer Science and Engineering, University of California, San Diego,
La Jolla, CA. {tkmarks, gary}@cs.ucsd.edu

Andrew Howard, Max Bajracharya, and Larry Matthies are at
NASA Jet Propulsion Laboratory, Pasadena, CA. {abhoward, maxb,
lhm}@robotics.jpl.nasa.gov

vision [3; 5; 6]. All of the existing stereo vision SLAM
algorithms are landmark-based. Futhermore, most current
approaches to SLAM address either indoor environments or
structured outdoor environments.

We take a new approach to stereo visual SLAM that
can be used in unstructured outdoor environments. In our
experience, autonomous navigation in such environments
requires the map to contain more than simply the locations
of easily-identifiable landmarks. For planning purposes, we
need a dense map for estimating the traversability of every
location (every cell) in the map. Furthermore, a simple binary
occupancy grid is not sufficient for off-road navigation,
particularly in vegetated terrain. In such environments, a grid
containing the variance of heights in each cell works much
better than an occupancy or elevation grid, providing a more
useful representation for navigation while not significantly
increasing the storage and processing requirements.

Existing grid-based SLAM systems [2] use laser range
finders and a binary occupancy grid. Occupancy grids, which
are often used in structured indoor environments, are based
on an underlying assumption that each cell in the world is
either occupied (non-traversable) or free (unoccupied). Based
on observations of each cell, the SLAM system [2] infers the
posterior probability that the cell is occupied vs. unoccupied,
which is a Bernoulli distribution. Another type of grid map,
an elevation map, corresponds to a representation of the
horizontal surfaces of an environment [7]. Elevation maps
are based on an underlying assumption that each cell in the
world is a flat surface, in which all samples from a cell
have the same elevation, or height, up to additive Gaussian
noise. Each cell of an elevation map, which is constructed
using the Kalman filter update rule, contains a Gaussian
posterior distribution over the height of the surface in that
cell. The mean of this Gaussian is the estimate of the height
of the surface, and the variance of the Gaussian measures the
uncertainty of this height estimate. In recent extensions of
elevation maps, which have been used in systems for outdoor
localization and for mapping and loop closing [8; 7; 9], a cell
is allowed to contain one or more horizontal surfaces or a
vertical surface. These extensions still assume that each cell
is a planar patch (or multiple levels of planar patches, or a
vertical surface), which makes them well suited to structured
outdoor environments such as urban roads and overpasses.
Map matching in these systems [8; 9] uses an ICP algorithm,
and they are currently much too slow for real-time SLAM.

In contrast to these other systems that use grid-based maps,
our system uses dense stereo vision, and the maps contain
the posterior distribution over the variance of heights in each

cell. Unlike occupancy grids (with the underlying assumption
that each cell in the world is either occupied or free) and
elevation maps (with the underlying assumption that each
cell in the world is a flat surface), our maps are based on
the assumption that the points observed from each cell in the
world are drawn from a Gaussian height distribution. Rather
than estimating the cell’s mean height, our system estimates
the variance of the heights. Variance maps are not limited
to flat surfaces, which is crucial for unstructured outdoor
environments. Our new mapping technique maintains a pos-
terior distribution over the variance of the heights (variance
of the elevations) of points in each grid cell. For each grid
cell, the posterior distribution over the precision (inverse
variance) of the heights is a gamma distribution. (Hence,
we call our algorithm Gamma-SLAM). Storage requirements
are small: each map cell simply contains two scalar values
that are the sufficient statistics of this gamma distribution
(see Section IV).

In Section VIII, we demonstrate how to use GPS readings
that have high inherent error to obtain an accurate alignment
of the Gamma-SLAM map to georeferenced coordinates. We
derive an online version of this alignment method that is
extremely efficient. This enables the robot to leverage the
precision of its SLAM maps to essentially obtain a super-
resolution GPS reading, by combining information from all
of the GPS readings obtained during the map collection.

II. THE MOBILE ROBOTIC PLATFORM

The algorithm was designed for and tested on the LAGR
hHerminator robot [10] (see Fig. 3, top), a differential drive
vehicle with 0.75 m wheel separation, 0.16 m wheel radius,
and top speed 1.3 m/s. Onboard sensors include an inertial
measurement unit (IMU) and two stereo camera pairs that
together provide a 140◦ field of view. Dense stereo range
data are generated from each of the two camera pairs, then
fused into a cartesian map containing map cell statistics [11].
The incremental vehicle pose is estimated using a visual
odometry (VO) algorithm based on [12], applying a corner
detector on each frame, matching features using the stereo
SAD (sum of absolute differences) scores over a local
window, and then estimating the camera motion using the
3D feature positions determined by stereo.

III. THE GENERATIVE MODEL

Our Gamma-SLAM system can be conceived as per-
forming inference on a generative model described by the
graphical model in Fig. 1. Given the sequence of observations
made by the robot from time 1 to t, denoted z1:t, and
the sequence of control commands (determined from visual
odometry), denoted u1:t, we simultaneously infer a posterior
distribution over both the map of the environment, h, and the
robot’s path (pose sequence) through the environment, x1:t.

The world map is a grid of G square cells with side
length 0.16 m. We assume that every point observed in
cell g (where g = 1, . . . , G) has its height drawn from a
Gaussian distribution, with precision (inverse variance) hg

xt−1 xt xt+1

utut−1 ut+1

zt−1 zt zt+1

h

Control signal
(from VO)
Robot pose

Observation

World map

Fig. 1. The goal of Gamma-SLAM is to simultaneously infer h and x1:t

given a sequence of observations z1:t and a sequence of control signals
u1:t (obtained from visual odometry).

and unknown mean. The entire world map is h= {hg}G
g=1,

the collection of all grid cells.

A. Motion model
The controller for our robotic vehicle maintains a full

6-degree-of-freedom estimate of the robot’s pose, but for
navigation and planning, a lower-dimensional representation
is sufficient. For the purposes of the algorithm described
in this paper, the robot pose xt consists of a 2D position,
dt, and orientation, θt. The control signal, ut, consists of
a robot-centered translation, ∆dt, and rotation, ∆θt. The
motion model dictates that xt is given by the previous pose
incremented by the control signal, plus a small amount of
Gaussian noise, qt:

xt xt−1 ut qt[
dt

θt

]
=

[
dt−1

θt−1

]
+

[
∆dt

∆θt

]
+

[
qdt

qθt

]
,

(1)

where qdt ∼ N(0,σ2
d), qθt ∼ N(0, σ2

θ).

B. Observation model
Each observation obtained from dense stereo vision con-

tains a large number of points with locations (x, y, z). For
each point observed, we bin the xy-locations into a square
grid aligned with the world map. After the observed points
are collected into cells, each cell in the grid contains a
set of n heights (z-coordinates). For each cell, we assume
that these heights are i.i.d. samples, {s1, . . . , sn}, from a
one-dimensional (1D) Gaussian with unknown mean µg and
precision hg

(
where precision = 1

variance

)
. (For simplicity, we

almost always omit the subscript g and simply call these µ
and h.) Note that observations may have different values of
n for different cells; for example, cells close to the robot
tend to have larger n than faraway cells. We can write the
likelihood of drawing these n samples as a function of the
unknown population mean and precision, µ and h:

p(s1, . . . , sn |µ, h) =
n∏

i=1

p(si |µ, h) =
n∏

i=1

fN (si;µ, h)

= (2π)−n/2hn/2e−
1
2 h

Pn
i=1(si−µ)2 , (2)

where fN (si;µ, h) denotes the 1D Gaussian pdf with mean
µ and precision h.

We summarize the collection of data samples {si}n
i=1 by

its sample mean and variance, m and v:

m=
1
n

n∑
i=1

si, v=
1
k

n∑
i=1

(si −m)2, where k = n− 1. (3)

Now with some algebraic manipulation, we can rewrite the
likelihood equation (2) in terms of m and v:

p(s1, . . . , sn |µ, h) = (2π)−n/2e−
1
2 hn(m−µ)2 · hn/2e−

1
2 hkv.

(4)
Integrating this likelihood over all values of s1, . . . , sn that

have the same sufficient statistics m, v gives the likelihood of
observing data with mean and variance m, v when we sample
n points from a Gaussian distribution whose population mean
and precision are µ, h. This likelihood is the product of a
normal distribution and a gamma distribution [13]:

p(m, v |µ, h;n, k) = fN (m;µ, hn)fγ2

(
v;h, k) = (5)

(2π)−
1
2 (hn)

1
2 e−

1
2 hn(m−µ)2 · 1

Γ
(

1
2k

)(
1
2hk

)k/2
v

1
2 k−1e−

1
2 hkv.

As is evident in the equation above, we use fγ2 as a
convenient parameterization of the gamma function:

fγ2(v;h,k) def=fγ

(
v; 12k, 12hk

) def=
1

Γ
(

1
2k

)(1
2hk

)k/2
v

1
2 k−1e−

1
2 hkv.

(6)

Reducing the dimensionality of the hypothesis space for
both the robot location and the map makes SLAM algorithms
much more efficient. Using the pitch and roll information
from the robot’s inertial measurement unit (IMU) enables us
to reduce the robot’s position to 4 degrees of freedom and to
record the stereo range data as height values within cells in a
horizontal grid map. For the environments we have tested so
far, we have been able to reduce the dimensionality of both
the pose space and the map further by choosing to omit the
z-value (absolute elevation) of the robot and of each map
cell. In each observation, we know the relative z-values of
every point, but the the evolution of the z-values over time is
not strongly constrained by the visual odometry (VO) results,
so we have chosen not to maintain an accurate estimate of
the robot’s elevation over time nor of the mean elevation of
the points in each map cell. This 2 1

2 -D representation of the
world has been sufficient for navigating a wide variety of off-
road environments. For this reason, we do not use the mean
height statistic m collected from each observation, except
to compute the variance statistic, v. We therefore ignore
the posterior distribution over µ, computing the marginal
posterior distribution over h by integrating m out of (5):

p(v |h; k)=
∫

m

fN (m;µ, hn)fγ2

(
v;h, k)dm (7)

= fγ2

(
v;h, k) =

1
Γ
(

1
2k

)(1
2hk

)k/2
v

1
2 k−1e−

1
2 hkv.

IV. BAYESIAN UPDATE OF A MAP CELL

If we know the precise pose history (path) of the robot,
x1:t, as well as the sequence of observations z1:t, then we can
infer the posterior distribution over the world map. For each
grid cell g, the inferred map contains a distribution over the
precision (inverse variance) of the Gaussian distribution of
heights in that cell. The map can be thought of as combining
all of the observations from time 1 to time t, aligned (rotated
and translated) according to the pose at each time step, x1:t.

Making the simplifying assumption that the precisions of
the grid cells are conditionally independent given the robot’s
path and observations, we express the map at time t as:

p(h |x1:t, z1:t)︸ ︷︷ ︸
map at time t

=
G∏

g=1

p(hg |x1:t, z1:t). (8)

A map is made up of cells, each of which contains the
sufficient statistics (v, k) of a gamma distribution. This can
be interpreted as the distribution of our beliefs about the
precision h of the normal distribution of heights from which
that cell’s points were sampled. When we collect a new
observation (a new set of data points for a map cell), we
use the previous gamma distribution for the cell as our prior,
then use the new data points to update our beliefs, obtaining
a new gamma distribution as our posterior for that map cell.

Given the pose at time t, we know which points from the
observation at time t correspond to each grid cell in the map.
For any particular cell, at time t we observe some number
n = k+1 of points that lie in that cell (according to the pose
xt), and we compute their data variance, v, using (3). This
section explains how to use this observation (summarized
by statistics v, k) to update the corresponding cell in the
prior map (summarized by statistics v′, k′), thus obtaining a
posterior map (a posterior distribution over the precision of
heights in this cell, summarized by statistics v′′, k′′).

A. The gamma prior

When estimating the precision h of the Gaussian distribu-
tion of heights in a cell, the conjugate prior is the natural
conjugate of the likelihood distribution (7), which is a gamma
distribution. We parameterize this gamma prior over h with
parameters v′ and k′:

p(h | v′, k′) = fγ2

(
h; v′, k′)

=
1

Γ
(

1
2k′

)(
1
2k′v′

)k′/2
h

1
2 k′−1e−

1
2 hk′v′ . (9)

This is the prior distribution before we incorporate our
current data samples; the sufficient statistics v′ and k′ are
obtained from the data collected in previous time steps.1

B. The gamma posterior

Suppose that for a given cell in the map, the prior
distribution over h is defined by (9), with sufficient statistics
(v′, k′). Then we take an observation (we observe n = k+1
new points from the cell), and this observation has sufficient
statistics (v, k), defined by (3). By Bayes rule, the posterior
distribution for the cell in the map is proportional to the

1Note that if we wanted to maintain an estimate of the mean height of
each cell as well as its variance, we could choose to calculate the posterior
distribution over both the mean and precision of heights in each cell; in
that case, the natural conjugate distribution would be the normal-gamma
distribution [13].

product of the prior distribution (9) and the likelihood (7):

p(h | v′, k′, v, k) =
p(h | v′, k′) p(v |h; k)∫

h
p(h | v′, k′) p(v |h; k) dh

=
fγ2(h; v′, k′) fγ2(v;h, k)∫

h
fγ2(h; v′, k′) fγ2(v;h, k) dh

. (10)

Multiplying (9) by (7) and eliminating terms that do not
depend on h, we obtain:

p(h | v′, k′, v, k) ∝ e−
1
2 h(k′v′+kv) h

1
2 (k′+k)−1. (11)

We can write the posterior more simply by defining new
posterior parameters k′′ and v′′: by letting

k′′ = k′ + k , v′′ =
k′v′ + kv

k′ + k
, (12)

we obtain
p(h | v′, k′, v, k) ∝ e−

1
2 hk′′v′′ h

1
2 k′′−1. (13)

This has the form of a gamma distribution in h. Since
the posterior distribution over h is a properly normalized
probability distribution, this posterior must be the following
gamma distribution:

p(h | v′, k′, v, k) = fγ2(h; v′′, k′′). (14)

a) The Uninformative Prior: If no points have yet been
observed in a cell, we use the uninformative prior: k′ = 0,
and v′= 0 (or indeed let v′ equal any finite value). For this
prior, the Bayesian update (12) simply produces k′′= k and
v′′= v. Thus if the incoming data are the first data to go into
a cell, the sufficient statistics for the posterior distribution
will simply be equal to the data statistics.

C. Likelihood of an observation

Suppose we have our map at time t − 1, which
is p(h |x1:t−1, z1:t−1). Each cell of this map,
p(h |x1:t−1, z1:t−1), is a gamma distribution that is
summarized by the sufficient statistics v′, k′. Suppose we
observe k new points from this cell at time t. What is
the likelihood that our observation will have a given data
variance, v? (We will need the answer later to determine
the relative weights of our particles.)

Suppose a cell of the prior map has statistics v′, k′, and
we now observe n = k + 1 new points from the same cell.
The probability that our current observation will have data
variance v is:

p(v | v′, k′; k) =
∫

h

p(h, v | v′, k′; k) dh

=
∫

h

p(v |h; k) p(h | v′, k′) dh. (15)

By noting that this is the denominator of (10), we can
use (10) and (14) to obtain the following:

p(v | v′, k′; k) =
fγ2(v;h, k) fγ2(h; v′, k′)

fγ2(h; v′′, k′′)
(16)

=
Γ
(

1
2k′′

)
Γ
(

1
2k

)
Γ
(

1
2k′

) · (kv)k/2(k′v′)k′/2

(k′′v′′)k′′/2
· v−1.

V. SLAM USING RAO-BLACKWELLIZED PARTICLE
FILTERING

The distribution that we estimate at each time step, which
we call the target distribution, is the posterior distribution
over the path (pose history) of the robot and the correspond-
ing map. Our inputs are the history of observations, z1:t,
and the visual odometry (VO) which we treat as the control
signal, u1:t. We factorize the target distribution as follows:

p(x1:t,h | z1:t,u1:t)︸ ︷︷ ︸
target distribution

= p(x1:t | z1:t,u1:t)︸ ︷︷ ︸
filtering distribution

p(h |x1:t, z1:t)︸ ︷︷ ︸
map

.

(17)

This factorization enables us to estimate the target distri-
bution using Rao-Blackwellized particle filtering [4], which
combines the approximate technique of particle filtering for
some variables, with exact filtering (based on the values of
the particle-filtered variables) for the remaining variables. We
use a particle filter to approximate the first term on the right
side of (17), the filtering distribution for the particle filter,
using discrete samples x[j]

1:t. For each of these samples (parti-
cles), we use exact filtering to obtain the second term in (17),
the map, using the map updates described in Section IV.

By Bayes Rule and the probabilistic dependencies implied
by the graphical model (Fig. 1), we can write the filtering
distribution for the particle filter as follows:

p(x1:t|z1:t,u1:t)︸ ︷︷ ︸
filtering distribution

∝ p(zt|x1:t, z1:t−1,u1:t)︸ ︷︷ ︸
importance factor

p(x1:t|z1:t−1,u1:t)︸ ︷︷ ︸
proposal distribution

,

(18)
where the proportionality constant does not depend on the
path x1:t. We further factor the last term:

p(x1:t|z1:t−1,u1:t)︸ ︷︷ ︸
proposal distribution

= p(xt|xt−1,ut)︸ ︷︷ ︸
sampling distribution

p(x1:t−1|z1:t−1,u1:t−1)︸ ︷︷ ︸
prior filtering distribution

.

(19)

Equations (18) and (19) express the filtering distribution at
time t as a function of the filtering distribution at t − 1.
The sampling distribution in (19) is given by the motion
model (1). To compute the importance factor in (18), observe
that

p(zt |x1:t, z1:t−1,u1:t)︸ ︷︷ ︸
importance factor

=
∫
h

p(zt,h |x1:t, z1:t−1,u1:t)dh

=
∫
h

p(zt |h,xt)︸ ︷︷ ︸
likelihood of observation

p(h |x1:t−1, z1:t−1)︸ ︷︷ ︸
prior map

dh.

(20)

Since we have assumed that each cell of the map is inde-
pendent, we compute the importance factor separately for
each grid cell that is nonempty in both the prior map and
the current observation, then take the product over all of
these grid cells to obtain the importance factor for the entire
observation. To see how to compute the importance factor for
a grid cell, note that (20) for a single map cell is precisely the
observation likelihood (15), so we can compute it using (16).

Fig. 2. Course A. Top: Photo. Lower left: Map made using VO alone. Lower right: Map made by Gamma-SLAM with 100 particles. The left and
right sides of each map correspond to the left and right sides of the photo, respectively. Color indicates the expected standard deviation of the heights in
each grid cell. In the Gamma-SLAM map, the orange traffic poles appear as small yellow circles with orange centers. The plastic storage bins, which are
shorter, appear in light blue, while the corners of the tall buildings (at the upper left and upper right of the map) appear in red-orange.

VI. THE GAMMA-SLAM ALGORITHM

At time step t, estimate the effective number of parti-
cles [14] using the particle weights from all J particles at
time t− 1: Jeff = 1PJ

i=1

(
w

[i]
t−1

)2 . Then do the following for

each particle j = 1, 2, . . . , J .

• If Jeff ≥ J
2 : Let x̃[j]

1:t−1 = x[j]
1:t−1, and let w̃

[j]
t−1 = w

[j]
t−1.

• If Jeff < J
2 [Resampling step]: Sample (with replace-

ment) a particle x̃[j]
1:t−1 from the previous time step’s

particle set, {x[i]
1:t−1}J

i=1, with probability w
[i]
t−1. Set

w̃
[j]
t−1 = 1

J .
• Prediction: Sample a new pose from the proposal distri-

bution, given by the motion model (1):

x[j]
t ∼ p(xt | x̃[j]

t−1,ut). (21)

Append the new pose onto the particle’s path (pose
history): x[j]

1:t =
{
x̃[j]

1:t−1,x
[j]
t

}
.

• Measurement update: Rotate and translate the obser-
vation zt according to pose x[j]

t , so that the observation
aligns with the particle’s existing map (so the grid cell
boundaries are in the same locations). For each grid cell
that is observed, compute the data statistics v, k, then
combine this with the prior map for this cell (statistics
v′, k′) by updating the map using (12). This gives the
statistics v′′, k′′, which comprise that cell of the particle’s
map at time t.

• Importance weight: For each grid cell g that is
nonempty in both the current observation and the prior

map, compute an importance factor, λ
[j]
tg , using the log-

arithm of (16):

log λ
[j]
tg = log Γ

(
1
2k′′

)
− log Γ

(
1
2k

)
− log Γ

(
1
2k′

)
(22)

+ 1
2

[
k log(kv) + k′ log(k′v′)− k′′ log(k′′v′′)

]
−log v.

To compute the importance factor for the particle, sum
the log importance factors of all cells that are nonempty
in both the current observation and the prior map, then
divide by a constant β times the number G̃ of such cells2:

log λ
[j]
t =

1
βG̃

∑
g

log λ
[j]
tg . (23)

The new weight of the particle is equal to the product of
its old weight and its importance factor:

w
[j]
t ∝ w̃

[j]
t−1 · λ

[j]
t , (24)

where at the end of the time step, the particle weights
w

[j]
t are normalized so

∑
j w

[j]
t = 1.

VII. SLAM RESULTS

The robot was driven via remote control through two
courses (course A and course B) on uneven sandy ground. On
both courses, we ran Gamma-SLAM with 100 particles. To
test the accuracy of the Gamma-SLAM system versus visual

2If all grid cells were truly independent as we assumed, then we could
simply calculate the importance factor λ

[j]
t using log λ

[j]
t =

P
g log λ

[j]
tg .

In practice, however, this equation results in an observation likelihood that
is too steep (the best particle has almost all of the weight, whereas its
competitors have almost none), which is probably due (at least in part) to
the independence assumption. The factor 1

βG̃
in (23) counteracts this effect.

odometry (VO) alone, we paused the robot several times
during the course of the run and measured its ground truth
position using a Total Station electronic surveying device.
Table I shows the root-mean-squared position errors for each
course, using Gamma-SLAM versus using VO alone.

The objects in course A (shown in Fig. 2, top) included
orange traffic poles, plastic storage bins, rocks, and the
corners of buildings. The robot was driven back and forth
over this course three times during the course of the run.
Fig. 2 shows the map made using Gamma-SLAM (bottom
right), as well as the map made without SLAM using the
pose information from VO alone (lower left). We made this
VO-only map by applying the same map update rules from
Section IV using the pose taken directly from the visual
odometry. In the VO-only map, there are two or three copies
of each object, because each time it drove through the map,
the robot’s VO estimate of its position had shifted with
respect to the true position. As a result, narrow gaps have
been closed off in the map, which would make planning
and navigation virtually impossible. In contrast, the Gamma-
SLAM map (lower right) provides an accurate map of the
terrain. Course B (shown in Fig. 3, top) consists of large
loop, which the robot drove around three times during the
run. Course B contains four traffic poles (roughly indicating
the robot’s path through the course) and a few plastic bins,
but the course consists mainly of rocks of various sizes, from
small rocks to boulders. Fig. 3 (top) shows a photo of the
course, with the robot facing one of the orange traffic poles.

By comparing to the course photos (Figs. 2 and 3, top),
notice that the Gamma-SLAM maps capture not only the
locations of obstacles (as an occupancy grid would), but also
information about the heights of objects. The system will
observe small height variance in a cell (the map cell will
appear more blue) if an object is flatter to the ground. A
taller object will have greater height variance (the cell will
appear more red). The accompanying video shows Gamma-
SLAM in action as the robot drives through course B.

VIII. GPS ALIGNMENT

The robotic vehicle we used has a GPS receiver, but the
methods we have described so far do not use GPS. The error
in the GPS signal is quite large compared to the precision
of the SLAM maps, at least for all cases we have tested
to date (maps a few tens-of-meters on a side). However,
while the SLAM maps provide excellent relative position
information, they are not absolutely aligned with the Earth.
We can combine Gamma-SLAM’s precise measure of the
relative position of the robot at each time step with the

TABLE I
ERROR FROM GROUND TRUTH ROBOT POSITIONS: GAMMA-SLAM VS.

VISUAL ODOMETRY (VO) ALONE.

Course Distance RMS error (in m)
traveled VO only Gamma-SLAM

Course A 164 m 1.24 0.29
Course B 204 m 1.12 0.21

comparatively imprecise GPS readings to obtain a measure
of the robot’s position in georeferenced coordinates much
more accurate than that provided by the GPS receiver alone.

Below, we first describe a batch method for aligning
a particle’s SLAM map with the Earth (in georeferenced
coordinates) using all of the past GPS data and the SLAM
position data for the particle. Then we present an incremental
(online) version of the algorithm, usable for real-time updates
of the georeferenced coordinates of the SLAM map (and the
georeferenced position of the robot) for multiple particles.

A. Batch algorithm for GPS alignment

The GPS receiver on the robot provides estimates of
latitude, longitude, and horizontal estimated position error
(EPE), with typical errors of 3–10 m (WAAS-enabled, un-
obstructed sky view). For simplicity, we assume that this
horizontal error estimate, σ, is proportional to the standard
deviation of the error distribution of that GPS reading.

Define the 2 × t matrix B so that its ith column, bi,
contains the 2D position of the robot inferred by Gamma-
SLAM at each time step i = 1, . . . , t. Note that the values
in B (in meters) are in a local coordinate system. Let the
2 × t matrix A contain the GPS reading of the 2D global
position of the robot at each of the same time steps, ai, in the
global (utm) coordinate system (also in meters). Finally, let
σi denote the GPS receiver’s horizontal estimated position
error (EPE) for the reading at time i.

Our goal is to find the 2×1 translation vector, l (in meters),
and 2 × 2 rotation matrix, R, that transform the SLAM
map from local coordinates to global coordinates with the
least error from the GPS signal. Furthermore, the measure of
how egregious a particular error is should be divided by the
corresponding horizontal estimated position error (EPE): a
difference of 10 m is more worrisome when the EPE reading
is 5 m than when the EPE reading is 20 m. Thus, our goal is
to find R and l that minimize the following error function:

ε =
t∑

i=1

∥∥∥∥ai − (Rbi + l)
σi

∥∥∥∥2

2

. (25)

Define the weight ωi = 1
σi

, and let µ and ν represent the
following weighted averages of the GPS positions and the
SLAM positions, respectively:

µ =
1∑t

i=1 ω2
i

t∑
i=1

ω2
i ai ν =

1∑t
i=1 ω2

i

t∑
i=1

ω2
i bi.

(26)
It can be shown that the rotation and translation that mini-
mize the error function (25) map from ν to µ. In other words,
if we subtract the weighted mean µ from each ai and subtract
the weighted mean ν from each bi, then the translation from
one to the other that minimizes the error function is the zero
translation. Denote these mean-subtracted GPS positions and
mean-subtracted SLAM positions respectively by

ãi = ai − µ, b̃i = bi − ν. (27)

Define the 2× t matrixÃ so that the ith column is the vector
ãi, and similarly define the 2× t matrix B̃ so its ith column

Fig. 3. Course B. Top: Photo. Lower left: Map made with VO alone. Lower right: Map made by Gamma-SLAM with 100 particles. The tall buildings
(at the top and bottom of the Gamma-SLAM map) appear red-orange. The four orange traffic poles and the two white tent poles appear as small yellow
circles with orange centers. The rocks vary in color depending upon their size: small (short) rocks are dark blue, larger rocks are light blue, and the largest
(tallest) boulders are yellow-green.

Fig. 4. GPS alignment results on Course A. Left: The path of the robot according to the GPS readings is shown in red. (Notice the GPS error artifacts
such as the occasional sudden jumps in the GPS reading from one moment to the next. The red dot shows the GPS reading at the start of the run, and the
large dashed red circle (centered at the red dot) shows the horizontal estimated position error (EPE) given by the GPS unit at for that reading. In blue is
the path of the robot as inferred by Gamma-SLAM, translated and rotated so as to minimize the GPS error, ε. The blue dot indicates the position of the
robot at the start of the run. Right: Comparison of the horizontal EPE given by the GPS unit (in red) to the GPS error (measured as the distance from the
GPS reading to the optimally-aligned SLAM result). The SLAM solution is well within the error bounds given by the GPS unit throughout the run.

is b̃i. Then we can rewrite the error function (25) as:

ε =
t∑

i=1

∥∥∥ωi

(
ãi −Rb̃i

)∥∥∥2

2
. (28)

Letting Ω be the diagonal matrix of the weights, Ω =
diag(ω1, . . . , ωt), we can rewrite the error in matrix form:

ε =
∥∥∥ÃΩ−RB̃Ω

∥∥∥2

F
, (29)

where ‖·‖2
F represents the square of the Frobenius norm (the

sum of the squares of all of the elements of a matrix).
Find the rotation matrix, R, that minimizes the error (29),

using the orthogonal Procrustes method [15]: Take the singu-
lar value decomposition (SVD) of ÃΩ(B̃Ω)T = ÃΩ2B̃T :

ÃΩ2B̃T = USVT , (30)

where S is diagonal U and V are unitary (orthonormal)
matrices. Then UVT is the unitary transformation matrix

that minimizes the error. In this case, we require a pure
rotation (determinant = 1). If

∣∣UVT
∣∣ = −1 (which can

happen if the robot’s path is fairly linear and/or the GPS error
is high), there is a simple modification [16]: The rotation
matrix that minimizes the error, ε, is

R = UVT , if
∣∣UVT

∣∣ = 1; (31)

R = U
[

1 0
0 −1

]
VT , if

∣∣UVT
∣∣ = −1. (32)

B. Online algorithm for GPS alignment

An online (incremental) version of the algorithm described
above requires the running updates of a few values:

αt
def=

t∑
i=1

ω2
i ai, βt

def=
t∑

i=1

ω2
i bi, γt

def=
t∑

i=1

ω2
i . (33)

The update equations from time t−1 to time t for these sums,
as well as for the weighted averages µ and ν from (26), are:

αt = αt−1 + ω2
t at, βt = βt−1 + ω2

t bt, γt = γt−1 + ω2
t ,

µt =
αt

γt
, νt =

βt

γt
, (34)

Using these values, we can find the value at time t of the
2×2 matrix ÃΩ2B̃T by updating from its value at time t−1:[
ÃΩ2B̃T

]
t
=

[
ÃΩ2B̃T

]
t−1

(35)

+ γt−1(µt−1 − µt)(νt−1 − νt)T + ω2
t ãtb̃T

t .

These update equations provide the 2×2 matrix, ÃΩ2B̃T ,
on which to perform SVD. The optimal transformation
from local (SLAM) coordinates to global (georeferenced)
coordinates is then simply obtained using equations (30–32).

Since the update equations only require us to maintain and
perform a few calculations on a fixed number of 2-vectors
and 2 × 2 matrices, this GPS alignment requires extremely
low overhead in terms of both memory and computation
time, making it easy to incorporate into a real-time SLAM
system. Fig. 4 shows GPS alignment results on Course A.

The ability to georeference maps has two important im-
pacts. First, the robot can correctly fuse knowledge defined
in the GPS frame (such as waypoints) with the traversabil-
ity knowledge stored in the Gamma-SLAM map, thereby
supporting autonomous navigation behaviors. Second, maps
can be stored and reloaded for later use, since the error in
the stored map pose is negligble compared to the error in
the current robot GPS position estimate. Thus, the robot can
incrementally fuse data that are acquired during multiple runs
over the same territory into a single map.

IX. DISCUSSION

We have developed a new approach to SLAM that uses
dense stereo vision and infers a map containing a posterior
distribution over the variance of heights in each grid cell. Our
results show significant improvement over visual odometry
alone in an outdoor environment. Our map is unique among
SLAM systems due to the information that it contains and the
type of filter it uses to update this information. This type of
map is well suited to off-road outdoor environments, where

occupancy grids often provide insufficient information about
a cell’s contents, and landmark-based maps can be too sparse
to provide information needed for planning and navigation.
We also derived an online algorithm for aligning the SLAM
maps in georeferenced coordinates, enabling the integration
of GPS readings over time for more accurate running es-
timates of the robot’s global position. We are incorporating
Gamma-SLAM into a real-time system for autonomous robot
navigation in unstructured outdoor environments.

X. ACKNOWLEDGMENTS

This work was performed for the Jet Propulsion Labora-
tory, California Institute of Technology, and was sponsored
by the DARPA LAGR program through an agreement with
the National Aeronautics and Space Administration. GWC
is supported in part by NSF grant SBE-0542013.

REFERENCES

[1] Michael Montemerlo and Sebastian Thrun. Simultaneous
localization and mapping with unknown data association using
FastSLAM. In Proc. ICRA, 2003.

[2] Dirk Haehnel, Wolfram Burgard, Dieter Fox, and Sebastian
Thrun. An efficient FastSLAM algorithm for generating
maps of large-scale cyclic environments from raw laser range
measurements. In IROS, 2003.

[3] P. Elinas, R. Sim, and J. J. Little. σSLAM: Stereo vision
SLAM using the Rao-Blackwellised particle filter and a novel
mixture proposal distribution. In ICRA, 2006.

[4] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-
Blackwellised particle filtering for dynamic bayesian net-
works. In 16th Conf. Uncertainty in AI, pages 176–183, 2000.

[5] Stephen Se, Timothy Barfoot, and Piotr Jasiobedzki. Visual
motion estimation and terrain modeling for planetary rovers.
In Proc. ISAIRAS, 2005.

[6] M. Dailey and M. Parnichkun. Simultaneous localization and
mapping with stereo vision. In Proc. ICARCV, 2006.

[7] R. Kümmerle, R. Triebel, P. Pfaff, and W. Burgard. Monte
carlo localization in outdoor terrains using multi-level surface
maps. In Intl. Conf. Field and Service Robotics (FSR), 2007.

[8] R. Triebel, P. Pfaff, and W. Burgard. Multi level surface maps
for outdoor terrain mapping and loop closing. In IROS, 2006.

[9] P. Pfaff, R. Triebel, and W. Burgard. An efficient extension to
elevation maps for outdoor terrain mapping and loop closing.
International Journal of Robotics Research, 2007.

[10] L. D. Jackel, Eric Krotkov, Michael Perschbacher, Jim Pip-
pine, and Chad Sullivan. The DARPA LAGR program: Goals,
challenges, methodology, and phase I results. Journal of Field
Robotics, 24, 2007.

[11] Andrew Howard, Michael Turmon, Larry Matthies, Benyang
Tang, Anelia Angelova, and Eric Mjolsness. Towards learned
traversability for robot navigation: From underfoot to the far
field. Journal of Field Robotics, 24, 2007.

[12] H. Hirschmuller, P.R. Innocent, and J.M. Garibaldi. Fast,
unconstrained camera motion estimation from stereo without
tracking and robust statistics. In ICARCV’02, pages 1099–
1104, 2002.

[13] Howard Raiffa and Robert Schlaifer. Applied Statistical
Decision Theory. Wiley Classics Library, 2000.

[14] A. Doucet, S. J. Godsill, and C. Andrieu. On sequential monte
carlo sampling methods for bayesian filtering. Statistics and
Computing, 10:197–208, 2000.

[15] Gene H. Golub and Charles F. Van Loan. Matrix Computa-
tions. Johns Hopkins University Press, Baltimore, 1989.

[16] Jos M.F. ten Berge. The rigid orthogonal procrustes rotation
problem. Psychometrika, 71(1):201–205, 2006.

